Evaluation of Adhesive and Cohesive Energies of Reduced Graphene Oxide on Substrates

Li-Chih Tsai 1, Maysam Rezaee 2, Nathan P. Salowitz 1,2
Biomedical & Health Informatics 1 Department of Mechanical Engineering 2

Motivation
- Quantitatively measure bonding force between micro/nano layers.
- Characterize failure modes: adhesive or cohesive energies.
- Evaluate the mechanical stability of reduced graphene oxide (rGO).
- Investigate the critical factors affecting adhesive/cohesive failures.

Challenges
- Measuring bond force between layers is difficult because it is tiny.
- Bonging failures between layers can be adhesive, cohesive, or both.

Objective
- To quantitatively measure and identify bonding failures of rGO thin film.

Approach
- A testing method was introduced to measure bonding forces.
- An image processing method used to characterize bonding failures.
- To optimize the critical factors affecting bonding force.

Methods
- **Consistent Testing Platform (Fig 1)**
 - Peel Rate: Controlled by MTS automatic system.
 - Acquire Data: Output via a high precision load cell (0.25~10 lbf)
 - Peel Angle: Controlled based on kinematic analysis at 90° using a 45° inclined plane.

Overall Cohesive Failure (OCF) defined by ratio of the total area of detached rGO to the overall sample area. Evaluated using digital imaging.

Investigate Parameter Effects
- Effects of GO area density, APTES surface treatment, and GO sonication time on average adhesive energy, cohesive energy, and OCF ratio were investigated.

- **Methods**
 - **Investigate Parameter Effects**
 - A testing method was introduced to measure bonding forces.
 - An image processing method used to characterize bonding failures.
 - To optimize the critical factors affecting bonding force.

- **Results**
 - Cohesive Energy vs OCF
 - Cohesive energy was significantly affected by OCF ratio.
 - Average Adhesive Energy vs OCF
 - The average adhesive energy has a lower growth rate than cohesive energy.
 - A higher cohesive energy/average adhesive energy is resulted from a lower OCF ratio.
 - GO Area Density
 - GO area density had the most significant effect among all the factors.
 - 178 μg/cm² showed a higher bonding energy than other area densities.

- **Conclusion**
 - OCF is viewed as the indicator of adhesive & cohesive failure energies.
 - GO area density shows the most significant effect on both adhesive and cohesive failure energies.

- **Future Work**
 - Look further into each factor and seek optimal parameters that results in the largest bonding strength.
 - Seek optimal parameters on different substrates that leads to a larger bonding strength.

Literature cited
- Maysam Rezaee, Li-Chih Tsai, Azam Elyassgongi, Muhammad Istiaque Haider, Armin Yazdi, Nathan P Salowitz, Quantification of the mechanical strength of thermally reduced graphene oxide layers on flexible substrates, 2021, Engineering Fracture Mechanics, 243, 107525.
- Maysam Rezaee, Li-Chih Tsai, Muhammad Istiaque Haider, Armin Yazdi, Ehsan Sanatizadeh, Nathan P Salowitz, Quantitative peel test for thin films/layers based on a coupled parametric and statistical study, 2019, Scientific Reports.

Acknowledgments
- This work was supported by the National Science Foundation under Grant No 1727846, titled: “SNM: Customized Inkjet Printing of Graphene-Based Real-time Water Sensors”.
- PEEK, PTFE, and Kapton: CS Hyde Company & DuPONT
- Prof. Nathan P Salowitz, Dr. Maysam Rezaee from the Advanced Structures Laboratory at UWM.