Drinking Water Treatment by Using Polymer Nanocomposites

Sahebeh Tamaddoni Moghaddam, Ph.D.
Department of Materials Science & Engineering, College of Engineering & Applied Science, University of Wisconsin-Milwaukee, USA

Advisor: Prof. Nidal Abu-Zahra

Introduction
In this research, we synthesized PU foam nanocomposite adsorbent based on modified magnetic iron-oxide nanoparticles (Fe3O4@APTES) via in-situ polymerization method for the removal of heavy metal ions (Arsenic) from drinking water. The chemical structure and surface morphology were characterized using SEM analysis and TEM analysis. ICP-MS analysis was used to measure the concentration of the heavy metal ions from solutions. Sorption isotherm model was used to indicate the adsorption mechanism. The removal capacity of the PU nanocomposite was at its highest during a contact time of four hours (95% As removal).

Methods
For modification of nanoparticles, Iron oxide was added in ethanol solution and stirred then APTES was added in the solution and the mixture was stirred at room temperature. Then, the modified magnetic nanoparticle was collected by magnet and washed and dried in oven. The modified nanoparticles were dispersed in the polymer matrix. Finally, the sample was mixed with Isocyanate in a mold was kept at room temperature. Then, batch sorption experiment was done. Modified PU nanocomposites-

sample (20 % of nanoparticles) was soaked in 100 ppb arsenic solution for 1,2,3,4,5 and 6 h. Then the tubes were shaken at 200 rpm After each batch test, treated solution was filtered for ICP-MS analysis.

Results and Discussion
TEM image of synthesized Fe3O4@APTES NPs are shown in Figure 1. By modification of magnetic nanoparticles, you could see less aggregation in TEM image and the average size of NPs is below 100 nm.

Fig. 1. TEM image of modified Fe3O4@APTES nanoparticles

SEM image is used for Surface morphological analysis of the modified magnetic PU foam nanocomposites, as shown in Figure 2 the modified magnetic nanocomposites (20 wt%) shows smaller cell size. This result indicates that cell size is controlled by the competitive process between cell nucleation, growth, and distribution, which indicate the foam structure [1-2].

Fig 2. SEM image of modified magnetic PU foam (20 wt%)

By increasing the contact time, the number of arsenic ions attached to the nanoparticles improved. The adsorption reached equilibrium after 4 h, and increase had no effect on the adsorption capacity since we see the decrease in arsenic concentration and also the number of available active sites decrease (Figure 3) [1-4]. Langmuir and Freundlich isotherm models applied on the equilibrium the modified nanocomposites. The results showed that the Langmuir model was suitable for the adsorption behavior of arsenic based on the value of regression coefficients (R^2). Maximum adsorption was from the Langmuir equation to be 0.099 mg/g for arsenic.

Fig 3. Effect of contact time on Arsenic removal percentage

Conclusions
A PU nanocomposite incorporated with 20 wt% magnetic nanoparticles was prepared for the removal of arsenic ions from drinking water. The magnetic foam showed a strong adsorption capacity with a removal of 95% (4 h). Also, Langmuir isotherm showed a good fit for the experimental data.

For further information
https://scholar.google.com/citations?user=NjswY58AAAAJ&hl=en

Literature cited

Acknowledgments
The authors would like to thank Dr. Steven Hardcastle Dr. Ana Benko for their support and insights during the characterization and performance analysis of the samples.