Infiltration of mixture of coarse nickel powder and graphene by molten aluminum to form Metal graphene Composites

Samia El-Meanawy, Amir Kordijazi, Sridhar Lanka, Pradeep Rohatgi, Swaroop Behera, Kaustubh Rane
College of Engineering and Applied Sciences

Introduction

- In this experiment pressure infiltration of liquid Aluminum (Al) and graphene with the incorporation of coarse Nickel (Ni) spheres was explored.
- Without nickel additions, graphene bed could not be infiltrated due to lack of wetting and small inter particle spacing.
- Additions of graphene lead to decrease in wettability and increase in corrosion resistance.

Objective

- Infiltrate Al 356 alloy with graphene dispersed in Nickel (Ni) spheres was explored.
- Additions of graphene lead to decrease in particle spacing.
- This microstructure leads to a surface with low water wettability resulting in even distribution of graphene in the matrix.

Experimental procedures

- Nickel spheres (0.05 g) and graphene (0.05 g) was milled until fully incorporated.
- Glass tube for housing is coated with Zirconia wash (1B) and placed in low temp furnace at 80 Celsius for one hour.
- Inside of glass tube is sprayed with graphite.
- Nickel and Graphene mixture is placed in the tube (1A) with felt top placed on top. (1D)
- Aluminum A356 sample (10 g) placed in tube. (1C)
- Sample was then pressure infiltrated at 750-900 degree Celsius for 30 minutes at 300 psi.

Results

- Surface characterization

Figure 2: A Optical microscopy images of Al composite microstructure. B Optical microscopy image at higher magnification to show graphene distribution

Figure 3: A Scanning Electron Microscope (SEM) analysis image of the Al composite. B EDX chart showing concentration of elements in matrix with use of fine nickel powder.

Figure 4: Raman spectroscopy of Al composite sample. The D band circled in red suggest a disordered presence of graphene. Sharp peaks suggest single-layer graphene is present.

Wettability

- Phases on the surface and roughness of the surface is used to determine wettability
- Different droplet sizes were used to determine contact angle of Al composite.

Figure 5: Contact angle and droplet size readings for Al composite.

Conclusions

- Ni in the matrix aided in the wettability between the graphene and molten Al which resulted in excellent corrosion resistance of the composite.
- Microstructure suggests partly unmelted Ni in the matrix with a coating of Ni-Al and Al-Si with graphene between the Ni.
- Al composite sample was characterized via optical microscopy, SEM, EDX, and Raman spectroscopy.
- Characterization shows graphene present in-between Ni.
- The Al composite sample showed a high contact angle due to the nature of the graphene present which resulted in excellent corrosion resistance of the composite.

Future Work

- Continuation of current experimental process with the substitution of fine nickel powder.
- The purpose of experimenting with nickel powder is to get an even disruption of graphene all throughout the composite.
- Collaborate with local industry

Acknowledgments

To: Pradeep Rohatgi and Amir Kordijazi for their mentorship, collaboration, and use of the foundry and characterization labs at University of Milwaukee Wisconsin. SURF for generous funding and the opportunity to further my experimental knowledge as an undergraduate student. An additional thank you to my colleagues who are also enrolled in SURF as well as the Ph.D students of the foundry lab.

Thank you.

Literature cited

2) Mohammad Jawaid, Rachid Bouhfid and Abou el Kacem Qais, Functionalized Graphene Nanocomposites and their Derivatives, Synthesis, Processing and Application, A volume in Micro and Nano Technologies, 2019