Evaluation of Lower Extremity Kinematics During Gait in Children with Hypermobility Ehlers-Danlos Syndrome

Nicole A. Vigon¹, Anahita A. Qashqai², Alyssa J. Schnorenberg³, Michael Muriello³, Donald G. Basel³, Brooke A. Slavens¹²

¹The University of Wisconsin-Milwaukee, Department of Engineering and Applied Science, Milwaukee, WI
²The University of Wisconsin-Milwaukee, Department of Occupational Science & Technology, Milwaukee, WI
³Children’s Hospital of Wisconsin Genetics Center, Milwaukee, WI

INTRODUCTION

• Ehlers-Danlos syndrome is a disorder that affects connective tissues [1]
 • Hypermobile Ehlers-Danlos Syndrome is one of thirteen subtypes that primarily affects skin, joints and blood vessel walls [2]
 • 1 in 5000 individuals have hEDS [3]
 • Symptoms include overly flexible joints that can dislocate
 • Creating joint instability leading to early-onset osteoarthritis [4]
 • 1 in 5000 individuals have hEDS [3]
 • Symptom include overly flexible joints that can dislocate
 • Creating joint instability leading to early-onset osteoarthritis [4]
 • 1 in 5000 individuals have hEDS [3]
 • Symptom include overly flexible joints that can dislocate
 • Creating joint instability leading to early-onset osteoarthritis [4]

Goal: To evaluate the gait kinematics in children with hEDS

RESULTS

• Children with hEDS have similar range of motion to typically developing children
• Inspection of individual subjects shows variance from typically developing children
• Investigation in a larger population is ongoing to characterize the phenotype in children with hEDS

DISCUSSION

• When compared to healthy gait the group averages of children with hEDS fell within typical ranges [7,8]
• Inspection of individual subjects shows variance from typically developing children
• Investigation in a larger population is ongoing to characterize the phenotype in children with hEDS

METHODS

• Seven (7) children ages 9-17 with hEDS
• Mean age of 14 (2.9) years old
• Three males and four females
• Mean height 152 (17.3) cm
• Mean weight 54 (15.6) kg

ACKNOWLEDGEMENTS

Supported by the Children’s Wisconsin Genetics Center. A special thanks to the UWM College of Health Sciences Stimulus Program to Accelerate Research Clusters (SPARC) grant and the Office of Undergraduate Research Senior Excellence in Research Award (SERA).

REFERENCES

6. Vicon Vicon Nexus Motion Capture
7. Whittle Gait Analysis 1990