Introduction

- People who are exposed to ionizing radiation are categorized into environmentally, occupationally, medically radiation-exposed groups.
- A wide range of complications is reported in these groups.
- Particularly the risk of circulation diseases were observed even in people who were exposed to a low dose of radiation such as cancer patients[1].
- The effect of radiation in vessels can be acute or chronic, however, it leads to serious injuries imposed on endothelial cells in the basement of vessels.
- Vessel injuries caused cardiovascular disease that endangers the patient's life.
- A study showed that among the 3,234,256 cancer patients, 38% died from cancer and 11% died from cardiovascular diseases including heart disease, stroke, and damage to blood vessels[2].
- The kidney and heart are two inter-related organs and vascular injuries in the kidney can result in cardiovascular diseases that endanger the life of radiation-exposed groups[3].

Question: Does radiation induce vascular injuries in the kidney? If so, what are the statistics?

Goal

- Developing a method to extract the 3D vessel network and quantitatively assess the effect of radiation on kidneys’ vessels

References

[3] L Torborg, Mayo Clinic Q and A, 2019

Contact Information

- *Corresponding Author: Mahsa Ranji*
- Email: mranji@fau.edu
- Website: https://people.uwm.edu/biophotonics

Acknowledgments

- We would like to acknowledge the support of Medical College of Wisconsin and UWM RGI 101x370

Methods

- **3D fluoresce cryo-imager**
 - Images the surface NADH fluorescence of the tissue (organ), cuts the tissue with micron thickness and images the NADH surface fluorescence again.
 - Repeats these step sequentially

Results

Figure 1: Schematic view of 3D fluorescence cryo-imager

Figure 2: Vessel segmentation of NADH slices of a kidney

Experimental Protocol

<table>
<thead>
<tr>
<th>12.5 Grey irradiation</th>
<th>0 Grey irradiation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 0</td>
<td>n = 14</td>
</tr>
<tr>
<td>Day 60</td>
<td>n = 12</td>
</tr>
<tr>
<td>Day 90</td>
<td>n = 7</td>
</tr>
<tr>
<td></td>
<td>n = 6</td>
</tr>
</tbody>
</table>

- **Figure 3**: Experiment overview
 - 14 rats received 12.5 Grey irradiation, and 12 rats did not receive radiation (0 Grey irradiation)
 - The kidneys of half or rats in each group was harvested 60 days post-radiation and the other half were harvested 90 days post-radiation.

- **Figure 4**: Statics of total vessels volume
 - Total vessel volume in irradiated kidneys of day-90 post-radiation (p<0.05) is significantly lower than non-irradiated kidneys of day-90 post-radiation

Conclusion

- This novel research introduces a non-expensive method to extracted the 3D vessel structure of organs.
- Radiation adversely affects the vessels in kidney.
- Radiation-induced vessel injuries causes impaired blood perfusion in kidneys leading to cardiovascular diseases.
- Clinicians may seek to control cardiovascular diseases more aggressively in people who are exposed to radiation, particularly cancer survivors.
- The long-term goal of this research is to study multiple vascular diseases and use the outcome of it to promote strategies for controlling cardiovascular diseases.